Adequacy of open-loop Target Controlled Infusion devices: Is there room for a closed-loop control to improve automated propofol delivery during anesthesia?

Monia Guidi^{1, 2}, Alena Simalatsar^{1, 3}, Sandro Carrara⁴ and Thierry Buclin¹

¹Division of Clinical Pharmacology, University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland; ²School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland; ³Institute of Systems Engineering, University of Applied Sciences and Arts - Western Switzerland, Sion, Switzerland; ⁴Laboratory of Integrated Systems, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland

 $\Sigma \pi \approx \&$

Introduction & Objectives

pharmaceutiques

Methods

Experiment³

An Orchestra BasePrimea
pump (Fresenius Kabi,
Germany) was configured with
the characteristics of a virtual
male patient (70 kg, 170 cm

Propofol is a short-time acting hypnotic drug largely used for anesthesia induction and maintenance.

- Open-loop Target Controlled Infusion (TCI) devices are widely used to control propofol intravenous administration.
- Propofol pharmacokinetics (PK): 3-compartment model + 1 effect site compartment (brain).

First

- + Schnider *et al.*¹:
- model developed on 24 healthy volunteers;
- propofol PK depends on patient's age, weight, height and lean body mass;
- low inter-individual variability.

Figure1: Schematic representation of the propofol structural PK model. CL, clearance; V_1 , V_2 , V_3 , and V_4 , volume of distribution of central, first and second peripheral and effect site compartments; Q_2 and Q_3 , intercompartmental clearances of peripheral compartments; K_{ij} , first-order transfer rate from compartment *i* to *j*; IV, intravenous.

Eleveld et al.²:

- model developed on 660 individuals (volunteers and children, adults, elderly, and obese patients);
- propofol PK depends on body weight, development, age and gender as well as on individual status (volunteers vs. patients);
- important inter-individual variability.

The current algorithms driving TCI pumps are based on published PK models neglecting drug interindividual variability: propofol infusion rates are adjusted aiming to a defined target according to model-predicted plasma or brain concentration. The model of Schnider *et al.*¹ is recommended in many hospitals.

Problem: Clinical conditions may markedly alter propofol PK and actual propofol levels could significantly differ from predicted ones, leading to important drug over- or under-exposures.

and 36 years).

- ◆Changing propofol target brain concentration during a 15 min operation was set to 6 → 4 → 5 mg/L.
- Propofol dosage scheme to achieve these targets were obtained with the model of Schnider *et al.* as implemented in the BasePrimea pump.
- The equilibration time between brain and plasma concentrations at target achievement was extracted.

Simulations

- The virtual subject was simulated 10000 times under the estimated TCI dosage scheme using the comprehensive model with inter-individual variability developed by Eleveld *et al.*².
- Median plasma concentration with 90% prediction interval (PI_{90%}) were calculated and compared to the target brain concentrations at equilibrium according to TCI prediction.

Study aim: To assess the adequacy of TCI-predicted propofol dosages and to evaluate whether there would be room for a closed-loop control in anesthesia delivery to optimize drug dosages based on concentration measurements.

The percentage of virtual patients with propofol levels above 15 mg/L (maximum allowed in current TCI) was estimated.

Results

- According to Schnider *et al.*¹ model, plasma and effect site concentration were equilibrated maximum 2 min after target change.
- ◆ Figure 2 shows median with Pl_{90%} of the Eleveld *et al.*² model and TCI predicted plasma concentrations along with the aimed target and TCI predicted brain levels. The TCI dosage scheme is also shown.
- Comparison of simulated median (PI_{90%}) plasma and target brain concentrations at equilibrium according to TCI predictions:

Target levels (mg/L)	Median (Pl _{90%}) (mg/L)
6	5.9 (3.7-8.6)
4	4.1 (2.8-5.8)
5	5.0 (3.5-7.0)

•9% of virtual patients had concentrations exceeding 15mg/L within the first minute of propofol infusion.

Time(min)

Figure 2: Median with $PI_{90\%}$ concentration-time profile of propofol obtained by simulating 10000 times the virtual subject under the estimated TCI dosage scheme using the Eleveld *et al.*² model.

Conclusions

- Due to inter-patient variability, current TCI pumps probably deliver inadequate propofol dosages to a significant fraction of patients with possible clinical consequences.
- Our simulations show a potential for a closed-loop control of propofol administration based on real-time concentration measurement to improve automated anesthesia delivery.
- Controllers based on Kalman filter and Bayesian minimization incorporating real-time propofol measurements to optimize infusion rate are currently under development.

Acknowledgment: The research work presented in this poster is funded by the CoMofA Project of Swiss NSF foundation.

References

1.T. Schnider, C. Minto, P. L. Gambus, C. Andresen, D. Goodale, S. Shafer, and E. Youngs. *Anesthesiology*, **88**(5):1170–1182, 1998.

2. D. Eleveld, J. Proost, L. Cortinez, A. Absalom, and M. Struys. *Anesthesia* & *Analgesia*, **118**(6):1221–1237,2014.

3. A. Simalatsar, M. Guidi, and T. Buclin. *38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*, 533–536, Aug 2016.